skip to main content


Search for: All records

Creators/Authors contains: "Fago, Angela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Crocodilians are unique among vertebrates in that their hemoglobin (Hb) O2 binding is allosterically regulated by bicarbonate, which forms in red blood cells upon hydration of CO2. Although known for decades, this remarkable mode of allosteric control has not yet been experimentally verified with direct evidence of bicarbonate binding to crocodilian Hb, probably because of confounding CO2-mediated effects. Here, we provide the first quantitative analysis of the separate allosteric effects of CO2 and bicarbonate on purified Hb of the spectacled caiman (Caiman crocodilus). Using thin-layer gas diffusion chamber and Tucker chamber techniques, we demonstrate that both CO2 and bicarbonate bind to Hb with high affinity and strongly decrease O2 saturation of Hb. We propose that both effectors bind to an unidentified positively charged site containing a reactive amino group in the low-O2 affinity T conformation of Hb. These results provide the first experimental evidence that bicarbonate binds directly to crocodilian Hb and promotes O2 delivery independently of CO2. Using the gas diffusion chamber, we observed similar effects in Hbs of a phylogenetically diverse set of other caiman, alligator and crocodile species, suggesting that the unique mode of allosteric regulation by CO2 and bicarbonate evolved >80–100 million years ago in the common ancestor of crocodilians. Our results show a tight and unusual linkage between O2 and CO2 transport in the blood of crocodilians, where the build-up of erytrocytic CO2 and bicarbonate ions during breath-hold diving or digestion facilitates O2 delivery, while Hb desaturation facilitates CO2 transport as protein-bound CO2 and bicarbonate. 
    more » « less
  2. ABSTRACT Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in the control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and β-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb–O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland β-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulation of Hb–O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb–O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in Hb may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport. 
    more » « less
  3. null (Ed.)
    In vertebrate haemoglobin (Hb), the NH2-terminal residues of the α- and β-chain subunits are thought to play an important role in the allosteric binding of protons (Bohr effect), CO2 (as carbamino derivatives), chloride ions, and organic phosphates. Accordingly, acetylation of the α- and/or β-chain NH2-termini may have significant effects on the oxygenation properties of Hb. Here we investigate the effect of NH2-terminal acetylation by using a newly developed expression plasmid system that enables us to compare recombinantly expressed Hbs that are structurally identical except for the presence or absence of NH2-terminal acetyl groups. Experiments with native and recombinant Hbs of representative vertebrates reveal that NH2-terminal acetylation does not impair the Bohr effect, nor does it significantly diminish responsiveness to allosteric cofactors, such as chloride ions or organic phosphates. These results suggest that observed variation in the oxygenation properties of vertebrate Hbs is principally explained by amino acid divergence in the constituent globin chains rather than post-translational modifications of the globin chain NH2-termini. 
    more » « less
  4. Hemoglobins (Hbs) of crocodilians are reportedly characterized by unique mechanisms of allosteric regulatory control, but there are conflicting reports regarding the importance of different effectors, such as chloride ions, organic phosphates, and CO 2 . Progress in understanding the unusual properties of crocodilian Hbs has also been hindered by a dearth of structural information. Here, we present the first comparative analysis of blood properties and Hb structure and function in a phylogenetically diverse set of crocodilian species. We examine mechanisms of allosteric regulation in the Hbs of 13 crocodilian species belonging to the families Crocodylidae and Alligatoridae. We also report new amino acid sequences for the α- and β-globins of these taxa, which, in combination with structural analyses, provide insights into molecular mechanisms of allosteric regulation. All crocodilian Hbs exhibited a remarkably strong sensitivity to CO 2 , which would permit effective O 2 unloading to tissues in response to an increase in metabolism during intense activity and diving. Although the Hbs of all crocodilians exhibit similar intrinsic O 2 -affinities, there is considerable variation in sensitivity to Cl − ions and ATP, which appears to be at least partly attributable to variation in the extent of NH 2 -terminal acetylation. Whereas chloride appears to be a potent allosteric effector of all crocodile Hbs, ATP has a strong, chloride-independent effect on Hb-O 2 affinity only in caimans. Modeling suggests that allosteric ATP binding has a somewhat different structural basis in crocodilian and mammalian Hbs. 
    more » « less